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FOREWORD

This interim technical report was prepared by the Department of Aeronautical
and Astronautical Engineering, The Ohio State University, on Contract AF 33(616)-833C
for the Aeronautical Research Laboratories, Office of Aerospace Research, United
States Air Force. The work reported herein was accomplished on Task 7063-02, "Re-
search in the Mechanics of Structures" of Project 7063, "Mechanics of Flight", under
the cognizance of Mr. Charles A. Davies of the Thermo-Mechanics Research Laboratory,
ARL. The results contained herein were obtained during the period from 1 September
1961 to 1 August 1962.
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ABSTRACT

This report contains the results of a theoretical and experimental investigation
of the thermal strains and stresses produced in unrestrained long thin rectangular
plates by large spanvise temperature gradients. The temperature distribution is
steady state and the stress distribution approximates the two-dimensional "plane
stress" solution of elasticity theory. Two temperature gradients were investigated,
one in which the temperature changed about 150OF over a five-inch distance and one
in which the temperature changed about 700F over a one-inch distance. It was found
that for these relative large temperature gradients the solutions for the thermal
stresses given in the literature were either not applicable or impractical because
of the large number of terms required in the series type solutions. By converting
one of the available Fourier Series solutions into a Fourier Integral and using
residues and superposition it is possible to construct a solution for the stresses
in which only a few terms are needed in the series for the residues. The calculated
thermal strains compare reasonably well with the experimental results, although there
is considerable scatter in the strain gage results on the tests.
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INTRODUCTION

The problem of calculating the thermal stresses in plates subjected to temper-
ature changes has received considerable attention in the literature. Solutions
have been obtained under various assumptions as to the temperature distribution,
stress distribution, and geometry of the plate. There are solutions for thin
plates, thick plates, moderately thick plates, beam type plates with plane sections,
slowly varying temperatures along plate, any temperature distribution with a Fourier
Series expansion, etc. The question is which solutions are applicable to a given
problem, which solutions can be obtained by a practical amount of calculation, and
which solutions agree with experimental results for an actual plate.

To identify the various solutions and their associated assumptions and to
specify the particular plate problem to be discussed in this report, consider the
rectangular plate shown in Figure 1 with length 2L, width 2c, and thickness 2h.
Let the plate be unrestrained

>1

L L

Fig. 1. Rectangular Plate Geometry

with no external loads so that the boundary conditions on the stresses are

cxx = oxy, = xz - 0 on the ends x=±L (I)

ayy axy= ayz =0 on the edges y= ±c (2)

azz - axz - ayz a 0 on the surfaces z = ± h (3)

where oxx, Oya, and azz are the normal stresses in the x, y, z directions, respec-
tively, and oxy, axz, cyz are the shear stresses.

Manuscript released by the authors, August 1962, for publication as an ARL Technical
Documentary Report.
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Let the plate be subjected to a temperature distribution T(x,y,z), which repre-
sents the change in temperature. The problem is to find the thermal stresses in the
plate due to T(x,y,z). In general these stresses must satisfy the general equations
of thermoelasticity theory:

0/• 1' t= 2,.3 (4)
02

2 o(E 7aT _ TT t,

2 A v2 ~ - 1__ ___ 4- a a

where i,j = 1,2,3, X11 = xax, X %, X33 = OCZZ, X1 2 a Oy, X13 - Z, X3 = ayz,
X, = x, X2 = y, X3 = z, v is Poisson's ratio, E is modulus of elasticity, a is co-
efficient of thermal expression, 5ij is Kronecker delta, and

V2<e z 7 O -Ar '72-7 T(6)

No solution of the general thermoelastic equations (1) - (6) has been obtained
for general values of L, c, h, and T(x,y,z). However, various solutions of these
equations have been obtained under certain simplifying assumptions. The classical
two-dimensional plane stress problem is obtained by assuming the plate thickness 2h
small compared to 2c and 2L and taking Ozz -0 , axz = 0, ayz - 0. For this plane
stress case, the stresses can be expressed in terms of a stress function $(x,y)
satisfying the equation

'7¢ 01,117T 0

with a_
"& - axaY

The two boundary conditions on $ are determined by Eqs. (1) and (2).

Basically, there are two objections to using the two-dimensional plane stress
solutions as an approximation for the three-dimensional exact theory even when the
plate is supposedly thin. One objection is that some of the compatibility equations

2



(0q. 5) and one boundary condition at the edges and ends of the plate must be neg-
lected in reducing the three-dimensional theory to the two-dimensional. This problem
has been examined recently in Ref. 18 for the load case, where a systematic deriva-
tion from the exact theory of the differential equations and boundary conditions of
plane stress is given. A second objection is that the temperature gradient must be
considered in defining how thin the plate is. This problem is pointed out in Ref. 6
where an effort was made to calculate the three-dimensional stresses by using a power
series in the thickness of a moderately thick plate. For example, if T - Tom sin
(Tx/a), then the ratio ih/a determines whether the thickness effects can be neglected,
and a two-dimensional solution used. A tentative criteria given in Ref. 6 for the
division between two-dimensional and three-dimensional stress methods is

7r0. 2 2 dimensional
47

(8)

7 9.2 , / dimensional

However, this value is questionable since in Ref. 6 only two boundary conditions
were used at the edges of the plate in obtaining the corrections to the two-dimen-
sional stresses due to the thickness effects.

By making further assumptions with regard to the temperature distribution and
the boundary conditions, so-called one-dimensional solutions for the thermal stresses
can be obtained for the plate. Consider the following cases for both one-dimensional
and two-dimensional solutions for specified types of temperature distributions.

1. CASE OF T T(z)

If h << c • L an4 T = T(z), then the elastic thermal stresses in the plate are

azz 0 Cxy - axz r 0yz - 0

away from the ends and edges of the plate (see page 10 of Ref. 5, page 278 and page
01O of Ref. 3). By Saint-Venant's principle the end and edge effects might be ex-

pected to extend into the plate for a distance of the order of 2h. The stresses
given by Eq. (9) have been calculated for various temperature distributions. See
for example Chapter 4 and the-references therein of Ref. 5, Ref. 15, Section 12.5
of Ref. 3.



The inelastic problem for this case can be solved by the method of Ref. 8
using the stress-strain curves of the material at temperature. See Ref. 14 for
a case of plastic flow in the plate.

Apparently no solution is available for the stresses near the ends and edges
of the plate. Any solution for this case would be three-dimensional, involving all
the six stresses.

2. CASE OF T = T(y)

If h << c << L and T = T(y) then the plate acts somewhat as a beam with the
elastic thermal stresses given by

-cY
S=£ T(Y) T (Y) d Y ÷ P 7-(,) d Y1 (10O)

O7y = azz M 0xy = Oxz 0 0yz " 0

away from the ends (see page 9 of Ref. 5). To avoid possible thickness effects
from large gradients, the further restriction from Eq. (8), (T = Tom sin 7ry/b),

0. (1)

should be used, (Ref. 6). The end effects may extend into the plate about 2c by
Saint-Venant's principle. However, if b < c this distance may be of the order of 2b.

For the end effects and for the case of c - L, the problem becomes a two-dimen-
sional plane stress problem (see Refs. 1, 9, 12, and Section 9-3 of Ref. 5). For
end effects and for thickness effects, the problem becomes three-dimensional (see
Ref. 6 for some work on this problem for moderately thick plates).

The inelastic problem for this case is covered in Ref. 8 using the stress-
strain curves of the material at temperature.

3. CASE OF T - T(x)

If h << c << L and T - T(x) then the plate acts somewhat as a beam and on the
basis of elementary strength of materials theory no thermal stresses are produced.
Actually, the thermal stresses depend upon the gradient of T(x). To avoid possible
thickness effects assume the condition in Eq. (8) is satisfied.

If the gradients are not too steep then the solution by Boley in Ref. 2 applies
(see Ref. 7 for terms through the ninth derivative).



w-- - -,-____ -st j 6~ (z~C)L Z PA 36-0

y~ ~ Z) f (Y! Te 7

If

T =To.. SIN •(3

then d T T p even

in Eq. (12) so that Dir/a must be considerably less than one for Eq. (12) to be use-
ful. Note that the series in Eq. (12) terminates if T is expressed in a polynomial.
This solution does not apply at the ends.

If the temperature is expanded into a Fourier series such as

TA= -Z\ ("14)

then the stresses can be obtained from Timoshenko and Goodier (pages 48 and 405 of
Ref. 13)

=, - E K1,, T SINA, X

9, -Z EY, [K,. --r] T , S INX,



where

5 I N I- I +X • Z A , mC 
W A -Y 5

K3~, (16)3IM Y C2S H A,2 A5 NC C

It has been shown in Ref. 7 that the solution in Eq. (12) can be obtained directly
from Eq. (15) by expanding the hyperbolic functions in Eq. (16) in power series and
collecting terms on powers of 'm. This solution does not apply at the ends.

Horvay in Refs. 4 and 10 gives two-dimensional solutions for a step change in
the temperature. Since the infinite gradient at the step does not satisfy Eq. (8),
there is a question of the thickness effects in a range of ± 2h or more spanwise on
either side of the step.

Przemieniecki in Ref. 12 and Horvay in Refs. 4 and 9 include the end effects in
two-dimensional solutions. End effects are also included in the method used in Ref. 1.
For these solutions h << c 2ý L relations among h, c, and L can be used. Przemieniecki's
procedure (Ref. 12) involves a double series giving

Ir

where

L 6



w ith

M(f- COSH, f -COS& f- U(5INH.f- 5/lVA. f (F)

= I.730o04 yi - 0.982502
N. - 7.853205 -a w 1.000777
03 - 10.995608 73 - 0.999967
0. - 1'.-137166 y,- 1.000002

- 17.278760 7b - 1.000000

1 a(lc) A CC- (19)

Cim, 1E2-4T .V( 0 P) J7 20

The functions m in Eq. (18) together with the corresponding functions
are the characteristic functions of a vibrating beam with fixed ends satisfying

-. 0 - 0 at the ends 9 - 0 end 1 for Om(C) and - 0 and 1 for Tm(h). •us
the use of these functions in Eq. (17) allows all boundary conditions on the stresses
(eq. (i, 2)) to be satisfied.

If the temperature distribution has a form such as that in Eq. (13), then the
magnitude of the terms given by Eq. (20)depends upon the ratio (mv/a)' from Eq. (13),
and this in turn dictates the number of terms needed in Eqs. (17) and (19) to get
the thermal stresses within the desired accuracy. If the temperature gradient is
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large, as might be indicated by a value of MU/a > 1, then it is possible that a
large number of Am terms will be needed to get the stresses.

. CASE OF T - T(xy)

In Ref. 2 Boley gives a solution corresponding to Eq. (12) for T - T(x,y). As
indicated by Eq. (20) above, Przemieniecki's solution in Ref. 12 can be used for
T - T(x,y). Again the magnitude of the temperature gradients in either or both
directions would affect the applicability of these solutions.

5. CASE OF T = T(x,y,z)

Some discussion of this case with the temperature a polynomial in z is given
in Ref. 6 (see also the references given in Ref 6). No general solutions for this
case are available.

From the above discussion it is evident that there is considerable work, both
experimental and theoretical, to be done to clarify presently available solutions
of the plate problem, to develop further solutions for ranges of certain parameters
where present solutions may not apply, and to solve certain cases for which no solu-
tions have been developed.

The purpose of this report is to initiate some theoretical and experimental
work in an effort to clarify some of the questions raised in the above discussion.
The work in this report is restricted to the two-dimensional case--that is, the
temperature gradients considered are such that Eq. (8) holds for the two-dimensional
case. Thus, it is expected that the thickness effects will be small. No effort
will be made to clarify the third boundary condition problem arising in reducing
from the three-dimensional case to the two-dimensional case. Since most of the
work reported in the literature, both theoretical and experimental, has been on
cases 1 and 2, T = T(z) and T = T(y), the effort in this report is devoted to case
3, T = T(x). There appears to be little, if any, experimental work for case 3, and
there are questions as to the applicability of the theoretical solutions for rela-
t.vely large temperature gradients. Two steady state temperature distributions are
used, one with a medium gradient and one with q. relatively steep gradient, approach-
ing the border line between the two cases in Eq. (8). Equation (12) cannot be used
for either temperature distribution, while Eqs. (15) and (17) can be used for the
medium gradient case, but not for the steep gradient case.

CALCULATION PROCEDURES

This section describes the procedures for calculating the thermal stresses in
a rectangular plate for two different steady state spanwise temperature distribu-
tions. These temperature distributions correspond to those obtained in experiments
on a plate with 2L - 48", 2c - 9", and 2h - 1/4". In one case an approximate cosine
wave with a twelve inch wavelength was produced in the plate and in the other case
a narrow hot region about three inches wide was produced at the middle of the plate.

8



A. FOUR WAVE CASE

In this case a temperature distribution of the form

T - TR- T. C0S(4- 1"/L) (21)

was produced approximately in the plate. For such a temperature distribution the
thermal stresses away frm the ends of the plate can be calculated directly from
Eq. (15) using one term of a cosine series rather than the sine series given in
Eq. (15). However, this solution does not apply near the ends of the plate. To
obtain the stresses near the ends and to investigate how far the end effects extend
into the plate, Przemieniecki's solution (Ref. 12) given in Eq. (17) was used.
Again, for the temperature distribution in Eq. (21), it was an easy matter to cal-
culate the brn coefficients in Eq. (20). But then the question is how many terms
are needed in the double series in Eq. (17) to obtain accurate thermal stresses.
To investigate the number of required terms, Eq. (19) was solved by matrices for
eight Amn constants and for fifty Amn constants. In the latter case m took odd
values from 1 to 19 and n odd values from 1 to 9.

To calculate the stresses from Eq. (17) using the Ann constants it is necessary
to modify the function om(g) in Eq. (18) to avoid the subtraction of extremely
large numbers for large values of m. Since approximately for all fm

,( NF,,, = /- (- /"" e , C05 0

Eq. (18) can be written as

T 'O 4 C05(1 44  f C fl ,(, r.A f

= -(-b)e-'4"'' e-• .r e (-I)e-° - co5/ r (2)

IN,,, - - e- r



Further, e - ~"0.009 > •"P for all m so that with the approximation e-"M = 0
Eq. (22) becomes

+ e . (23)

Also, neglecting e"N, Eq. (23) can be further reduced for g away from the ends of
the plate so that

(f)= V7 5N( -41) , ,(241)

If m > 3 in Eq. (24), then the range of • for which Eq. (24) is applicable covers
most of the plate. Also, for m > 3, only one of the exponential terms in Eq. (23)
is needed on either end, the two ends being the same except possibly for sign.

Using Eqs. (23) and (24) and the tables of Ref. 16 the om(g) and •n(1) func-
tions were evaluated for L/c /48/9 and for several values of 11 at g = 0.125 or
x/L - -0.75 and 9 - 0.375 or x/L = -0.25. With these values the stresses in Eq. (17)
were calculated using eight Ann constants and using fifty Amn constants. It was
found that about seventeen of the fifty constants contributed significantly to the
ryy stress, while about twenty-five contributed to Oxx, and that the results given

by these constants differed by a considerable amount from those given by the eight
constants (as much as fifteen per cent variation at some points).

The results for oxx and cyy given by the seventeen and twenty-five constants,
respectively, in Eq. (17) are compared to the results given by Timoshenko's long
plate solution (Eq. 15) in Figs. 2 and 3. In Fig. 3 the distance from the end of
the plate is twice the plate width while in Fig. 2 the distance from the end is two-
thirds of the plate width. By Saint-Venant's principle it would be expected that
the agreement between the two solutions would be better for the case of Fig. 3, as
it is. However, for the case of Fig. 2, the agreement appears to be better than
might be expected. This may be due to the temperature gradient in this case. The
temperature changes from its minimum value at the plate end to its maximum value at
the x/L - -0.75 location used in Fig. 2, thus causing the thermal stresses to be
approximately zero at a point only one-third of the plate width from the end of the
plate. Due to these large stress changes in a short distance, it is possible the
end effects may not extend as far into the plate as they may for small spanwise
temperature gradients.

B. CASE OF THREE INCH HOT REGION (SHORT WAVE CASE)

From Eq. (14) it is evident that the representation of a three-inch wide temper-
ature hump of large amplitude in the middle of a 48-inch long plate by a Fourier
series requires a large number of terms--one of the largest terms corresponds to
a = 16. The large number of terms requires a prohibitive amount of calculation to

10



obtain the stresses in Eq. (15). Due to the second derivative of T in Eq. (20) and
the double series in Eq. (17), it appears that a still larger number of terms would
be required in Eqs. (20) and (19) to evaluate the Amn constants for Prsemieniecki's
solution (Eq. 17).

It is possible to reduce the amount of calculation by converting the Fourier
Series solution in Eq. (15) to a Fourier integral. Since the temperature distribu-
tion in the narrow hot region is determined by measurement it is simpler to represent
the temperature distribution by a sum of rectangles (see Fig. 18) and hence determine
the Fourier integral solution for a rectangular distribution. Consider the rectan-
gular elemnt shown in Fig. i.

L L

I 'g
'I -I

I I C

' L

Figure 4. Rectangular Element for Temperature Distribution

This temperature variation can be represented by

(25)
where

11



Timoshenko and Goodier give the solution (Eq. (15)) for T - Tm cos(tm W *) as

(O-a'/MEJ)= T K ,(tA,?)- C 2CO tA 5 X

where

K, t,,C, S.HJ,;5INIHt cOSNC t,,
= 24,t +51NH2t. (16A)

4, * 1 S IN HZt.,,

and

Therefore for the temperature profile under investigation

Ia/F =ý-ZT i,, t4, ?)CO S A rtE,,
(26)

O~~ ,,/&1L E~ 2T K2,,2 t~ ) CO 0 XY 5

Substitute Eq. (25) into Eq. (26) and 2.et Ne/L - At, whence

Cv-/ XE T Z K1,(4,7) 5IN A t,.C S.. C 0
(27)
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or in the limit

(28)

Oy-/4T oF7 1 fT zt ')iSIAtCOSAY't

These integrals are evaluated by the method of residues in the APPENDIX so that

and 
(29)

where analytical expressions for the functions fin(q), fan('I), f3n(.), f4n(ri),
(,n(N,*), and G2n(X,*), are given in the APPENDIX. Graphs of frn(T), fan(T), fan(O),

and. f'n(n) for n - 1,2,3 are shown in Figures 5,6,7 and 8 respectively. Graphs of
Gin(*,*) and %mn(1,4) with X - 0.27775 are shown in Figures 9 and 10 respectively.
Although this solution does not meet the conditions of a free end at x - ± L, the
stresses at the ends are zero for a << L. By using various values of N and To and
by shifting the origin it is possible to approximate a general temperature variation
by a sum of rectangles and thus obtain the stresses by superposition from Eq. (29).

Note that the shear stress, OI,, can be evaluated in a similar way to oxx and
ayy above.

The stresses shown in Figures 28, 29, and 30, corresponding to 7 - 0.27775,
were calculated using only three terms in Eq. (29) corresponding to the residues at
the first three poles. It can be seen that convergence is poor near the step (i.e.
near * - ± 1). At * - ± 1, and i = 0 the curves could easily be smoothed across the
step as shown in Figure 28. At 1 - 1 in Figure 30 the stress gradient is quite large
and there is considerable doubt as to the nature of the oxx stress variation across
the step. Investigation of this large stress gradient would require the use of addi-
tional poles; the use of a high speed computer would be recommended since a consider-
able amount of work is necessary to evaluate the different functions at the different
poles. However, in the superposition process used herein, this large jump is smoothed
out and the smooth variation shown in Figure 33 is produced for the measured tempera-
ture distribution (see later discussion in Results section).

13



EXPERIMTAL PROCEDURE

The test specimen was a piece of 2024-T3 bare aluminum alloy plate 0.25 inches
thick machined as shown in Figure 1 with 2L - 48 in., 2c - 9 in., 2h - 0.25 in. The
specimen was machined in such a manner as to reduce any residual stresses to a mini-
mam. The 0.25 inch thickness was selected so that any temperature gradient through
the thickness would be negligible.

The test specimen was heated by General Electric T-3 quartz lamps supported by
radient heating reflector units models AU8-612 and AU5-212 and controlled by a
Thermac three phase combined temperature controller and power regulator, model
SPG 6266w.

Heat sinks were provided by means of the two types of cooling tubes shown in
Figure Ui which permitted direct contact of the cooling water with the specimen.
The cooling tube shown in Figure .llA was used to provide cooling for Case A, but
it was found that even with water entering and leaving both ends of the tube there
was some chordwise variation in the temperature. This was probably due to the fact
that the water near the ends of the tube was in a more turbulent state than along
the center of the plate providing less cooling of the plate center than the plate
edges. This problem was reduced in Case B by use of the cooling tube shown in
Figure liB, where an internal tube with small holes sprayed water on the plate.
Thermoflax shielding was used to protect certain regions of the plate from radia-
tion and thus to control the length of the heat conduction path over these regions.

The desired temperature profiles were produced by properly positioning the
heating lamps, cooling tubes, and shielding over and on the plate. The configura-
tions used for Case A and Case B are shown in Figure 12A and 12B respectively. Al-
though the heating lamps were on one side of the plate and the cooling tubes on the
sam side, the temperature variation through the thin plate was negligible.

The temperature of various points on the plate was determined by Constantan-
Alumel thermocouples. The location of the thermocouples on the specimen for Case A
and Case B is shown in Figure 13A and 13B. The temperature distributions obtained
for several tests are shown in Figures 14, 15, 16, 17, 18. It can be seen from
these figures that the temperature gradients produced for Case A were about 300F
per inch and for Case B was about 700F per inch. These are steady-state temperature
distributions; no transient state tests were run.

Strains were determined by means of high temperature metalfilm strain gages.
The type used for Case A were Budd C12-142-B and for Case B were Budd C12-124-C.
All gages were mounted with Armstrong A-12 cement with parts A and B mixed in a
ratio of 2:1 for maximum hardness. Gages were mounted on the upper and lower sur-
faces and the edges of the plate as shown in Figure 13A for Case A and Figure 13B
for the Case B. After all gages had been mounted on the plate, the plate was then
temperature cycled a minimum of five times to properly "seat" and "shake down" the
gages to obtain a repeatable apparent strain vs. temperature curve. Each strain
gag circuit was then calibrated to obtain apparent strain vs. temperature curves.

The electrical circuitry used with this multiple strain gage installation is
shown in Figures 19 and 20. The circuit shown in Figure 19 was used with Case A in
which bending strains were electrically eliminated and a three-wire lead system was
used. It was found that the three-wire system proved ineffective due to the physical
arrangement of the lead wires. During tests, several gages were damaged which rendered
certain circuits useless for subsequent tests and those data points were lost.
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Since the three-wire lead system employed in Case A proved ineffective, this
system was abandoned in Case B in order to increase the strain sensitivity of the
circuit. The circuit shown in Figure 20 was used for Case B in which the gages on
the upper and lower surfaces of the plate were monitored separately; bending strains
could be eliminated by averaging the output of the upper and lover gapes. Many of
the gages were lost during test, however, because the limit temperature of the cement
was once accidentally exceeded which caused many of the lead wire terminal posts to
pull out and disconnect from the gages; also on the upper surface of the heated por-
tion of the plate, the unexpected high radiation of the heating lamps caused the
Teflon insulation of the lead wires and the 450OF solder connections of the lead
wire to the terminal posts of melt. Consequently most of the data points in the
heated portion of the plate were lost. Since there was obviously a tremendous
temperature gradient through the bonding cement, the functioning gages on the upper
surface of the plate in the heated portion recorded an excessive compressive strain,
roughly of about 300 microinches per inch, which could not accurately be accounted
for.

The strain distributions observed for Case A and Case B are discussed in the
RESULTS section of this report.

RESULTS

A. FOUR WAVE CASE

The stresses calculated by Przemieniecki's method (Ref. 12) and shown graphically
in Figures 2 and 3 are converted to strain and are shown ii. Figures 21, 22, and 23
along with the experimentally determined strains. It can be seen that more compres-
sive strain was observed in all cases at the plate center (n - 0.5) than was predic-
ted. This is believed due to uneven chordwise heating in which the center of plate
was observed to be hotter than the edges, the temperature difference ranging between
150F and 300F, which was not accounted for in the theoretical calculations but which
would cause more compression in the plate center than predicted.

The effect of differences in peak temperatures was also investigated. The
strains observed due to the temperature variation shown in Figure 17 are shown in
Figures 24, 25, and 26. It was concluded on the basis of these results (and later
verified both analytically and experimentally when investigating Case B) that the
effects of small differences in peak temperatures was essentially negligible a wave
length away from the temperature peaks and could be ignored. The strains at the
location of each peak temperature are determined by the corresponding peak tempera-
ture.

B. THREE INCH HOT REGION

The measured temperature at various points on the plate are shown in Figure 27.
It can be seen that the symmetrical temperature distribution desired was not attained.
Figure 18 shows the average spanwise temperature variation upon which the theoretical
calculations are based. Figure 18 also shows the temperature steps used to approxi-
mate this temperature profile. Figures 28, 29, and 30 show the calculated stresses
corresponding to a step with h - 0.27775. A series of such graphs were constructed
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with the various values of X and used to calculate the stresses produced by the
temperature distribution obtained. These stresses are shown in Figures 31, 32, and
33. The experimentally determined strains normalized with respect to UTO where To
is the maximum temperature difference, are also shown in Figs. 31, 32, and 33. The
observed strains are presented in a table in Figure 34. Even though the test data
is incomplete it can be seen that the correlation shown in Figure 31 is good and
that the trend predicted by theory agrees with the data presented in Figure 34.

CONCLUSIONS AND RECONMENDATIONS

Results obtained in this investigation of spanwise temperature gradients show
that there are both theoretical and experimental difficulties when the gradients
become large, requiring modification of existing procedures or development of new
procedures. The temperature gradients investigated in Case A (Four Wave Case) were
such that 7rc/a u 3r/4 and rh/a P 0.06 (see Eq. (8)). Since for Tc/a > 1, the solu-
tion given by Boley (Eq. (12)) would involve an impractical number of terms, it was
not used. The solutions given by Timoshenko (Eq. (15)) and Przemieniecki (Eq. (17))
were investigated. The question of convergence of Przemieniecki's solution was in-
vestigated by considering a rectangular array of 50 coefficients (Amn's) and deter-
mining which of these 50 terms were dominating. It was found that the dominating
terms were determined principally by the temperature distribution and the component
of stress sought. For the Four Wave Case it was necessary to use about seventeen
terms for oyy and twenty-five terms for oxx. The solution obtained using
Przemieniecd' s method was then compared with Timoshenko' s solution at x/L - -0.25
and x/L - -0.75. It was found that both methods were in good agreement at x/L =
-0.25, which is 18 inches from the end of the 9-inch wide plate. Although
Przemieniecki's method includes end effects and Timoshenko's method does not, good
agreement was also found at x/L = -0.75 which is 6 inches away from the end of the
9-inch wide plate. This agreement is better than might be expected by Saint-Venant's
principle and is probably due to the temperature gradient in this particular case.
The temperature changes from its minimum value at the plate end to its maximum value
at a point six inches from the end, thus causing the thermal stresses to be approxi-
mately zero at a point three inches from the end of the plate. The experimental re-
sults for both cases, 18 inches and 6 inches from the plate end agree quite well with
the calculated results. No thickness effects appeared to be present in the test
results.

The temperature gradients investigated in Case B (three-inch case) were such
that Tc/a = 37 and nrh/a O 0.2, thus bordering on the thickness effect problem (Eq. (8)).
No conclusions could be drawn regarding thickness effects due to the nature of the
recording mechanism and the recorded data. With a temperature gradient of this size
existing only in the center section of the plate, Przemieniecki's method was aban-
doned due to the convergence problem. The series solution given by Timoshenko had
to be modified by resorting to Fourier integrals and integration by resIdues before
a practical means of stress determination away from the ends was obtained. The
method presented herein is applicable to arbitrary spanwise temperature variations
as long as the temperature variations occur away from the ends of the plate and thick-
ness effects can be neglected.

It was found that the cooling system used in Case B proved to be an efficient
means of providing a uniform line heat sink as long as the water is allowed to come
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into direct contact with the surface to be cooled. The efficiency of this type
cooling tube is decreased when strain gages and water-proofing compounds are intro-
duced along the line of water contact.

It is recom•ended that a means of strain determination other than strain gages
be investigated. It was found that under the conditions of test, especially with
high temperatare gradients, that the problems of strain gage installations are meany.
Among these are the problems of shorter gage lengths for high strain gradients, the
effect of high radiation directly on the strain gages and the bonding cement, the
problem of lead wire connections and insulation, the high mortality rate in instal-
lations of this size, "shake down" and proper calibration, and the effect of sudden
heat surges as would be encountered in transient state tests.

It is also recommended that the case of T - T(x,y) be studied, initially inves-
tigating the solution proposed by Przemieniecki to include end effects. Perhaps it
would be possible to modify Przemieniecki's solution in a manner similar to the one
used to modify Timoshenko's solution such that the problem of a large number of terms
would be reduced or eliminated.

It is further recommended that the problem of thickness effects be investigated
in the hope of establishing certain geometrical criteria which predict the degree to
which thickness effects are present and thus establish a limit for two-dimensional
theory.

17



REFERENCES

1. Becker, H., "Simplified Thermal Stress Analysis of Re-entry Structures,"
American Rocket Society paper No. 1692-61, April 1961.

2. Boley, B. A., "The Determination of Temperatures, Stresses, and Deflec-
tions in Two-Dimensional Thermoelastic Problems," Journal of Aeronautical Sciences,
Vol. 23, pp. 67-75 (1956).

3. Boley, B. A., and Weiner, J. H., "Theory of Thermal Stresses," John Wiley
and Sons, New York, 1960.

4. Born, J. S., and Horvay, G., "Thermal Stresses in Rectangular Strips -

II," Journal of Applied Mechanics, Vol. 22, Sept. 1955, PP. 401-406.

5. Gatewood, B. E., "Thermal Stresses," McGraw-Hill Book Co., New York, 1957.

6. Gatewood, B. E., "Thermal Stresses in Moderately Thick Elastic Plates,"
Journal of Applied Mechanics, Vol. 26, pp. 432-436, 1959.

7. Gatewood, B. E., and Dale, R. G., "Note on Two Dimensional Stresses in
Long Beams with Spanwise Variation of Load and Temperature," ARL 62-329, April 1962.

8. Gatewood, B. E., and Gehring, R. W., "Allowable Axial Loads and Bending
Moments in Inelastic Structures Under Nonuniform Temperature Distribution," Journal
of Aerospace Sciences, Vol. 29, p. 513-520, may 1962.

9. Horvay, G., "The End Problem of Rectangular Strips," Journal of Applied
Mechanics, Vol. 20, March 1953.

10. Horvay, G., "Thermal Stresses in Rectangular Strips," Proceedings of the
2nd National Congress of Applied Mechanics, ASME, 1954, pp. 313-322.

11. Nelson, L. W., "Thermal Stresses Owing to a Hot Spot in a Rectangular
Strip," Journal of Applied Mechanics, Vol. 26, Dec. 1959, pp. 488-490.

12. Przemieniecki, J. S., "Thermal Stresses in Rectangular Plates," The Aero-
nautical Quarterly, Vol. 10, pp. 65-78 (1959).

13. Timoshenko, S. and Goodier, J. N., "Theory of Elasticity," 2nd Ed. McGraw-
Hill Book Co., New York, 1951.

14. Weiner, J. H., "An Elastic Plastic Thermal Stress Analysis of a Free Plate,"
WADC TN 55-512, ASTIA AD 97338, June 1955.

15. Weiner, J. H., and Mechanic, Harold, "Thermal Stresses in Fr''
Heat Pulse Inputs," WADC TR 54-428, ASTIA AD 118156, March 1957.

16. Young, Dana, and Felgar, R. P., "Tables of Characteristic Functions Re-
presenting Normal Modes of Vibration of a Beam," University of Texas Publication,
No. 4913; July 1949.

18



17. See5ald, F., Abhandl. Aerodynam. Inst., Tech. Hochschule, Aachen, Vol. 7,
p. 1U, 1927.

18. Reis, E. L., and Locke, S., "On the Theory of Plane Stress," Quarterly of
Applied Mathematics, Vol. 19, Oct. 1961, p. 195-203.

19



APPENDIX

The details of the evaluation by the use of residues of the integrals referred
to in the section on CALCULATION PROCEDURES is given below. The problem is to eval-
uate

uftte

5•N X t COS Xrt [K, t,?]- (A-l)

j'I~ COS AYrtfKz(t1 7)- 'Ii (A2)

where

, ) :(tCOS 14t : 5/ANHt)C25H74 - N1 51N1-t 51NH Nt (A3)
5INH1t +2"t

Two relations to be used in the derivations are

4 for / =I/l (A1 )

and

51NAt COSA/ = -- 51NAIt(-Ir-) +51JAtO-Y')1 (A5)

From Eq. (A3)

K, (4, )- ,-U)= (4- SINHt)/(#t ZSINHt)

(A6)
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whence

-K, (, 0 fora

(A7)

For ij <1, write Eq. (A3) as

(AB)

[SINH(1N7)t4 .51NH(- 
()t]}/[4t2SINHZtI

To find the limits of K1 and Kg as t approaches zero and as t approaches infinity,
use L'Hospital's rule to get

/I,• K;, 0, 7) =0 for P e-

IA* K, (4P)- 0 for 7___/(Ag)
Itl -g o

I f.*g (K, a2) -- -•for 7ý6

With t - a + io, the limits of

KA7)ei' t0I') and A,(tA'ke

as t approaches zero and as t approaches infinity are

0 for 7 -4 / a s r e- o I0 ,'/ -+ r o o

//;w*• K, u,,7) e' '0 for 7Af as I/f-o (for; K)L -.- for as ItI-0 (for v)
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Now the integrals in Eqs. (Al) and (A2) can be evaluated with the aid of the fol-
lowing integrals

''-a e -dL (A12)
,zC

where C1 and C2 are shown below

The typical integral in Eqs. (All) and (A12) becomes

u e ) (f, ?) e diP, do(

+,~ ~ t, 0• •)e:•(%
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or

t I ,fK .,?)e S A a(/:t
*, a" 7) (/Y e0

K,

?Iriz Residues at poles in C1  (A13)

In the limit as p approaches infinity and r approaches zero, Eq. (A13) gives

dd - Residues at poles inf Z 5the upper half plane

)I} for r-f/* 0 (AP4)

where the integrals around the semi-circles are zero in the limit by Eq. (AJO). By
using Eq.(lOa) and the procedure of Eq. (A13), the other integrals in Eqs. (All)
and (ýA12) give

4I f o r / t J 'o0£

(AW5

for

j kt¢2)SNX•OSyt:=2-• Po I/1= / (A16)
"Efo



f 7-U? RA 4 R for IY71'/
Ir(k15)NA tCC)5X rt4 ~ R for Ir (A17)

Le r I for

The poles of K 1(t,r)) and K2(t,n) are given by the non-zero tn such that

51N Nt-124, =0

or

S IN-H2, COS2, , 0 (a8)

C05H24 SIN4 t. -- 0 (A9)

From Eq. (A18)

CO52& = -- 2 / SINH20,w (A2o)

so that

Z,& = ARCCOS[-•4/SINH,2•,] (A21)

S/ 4A = -t [ I - (zq, 1/511N H Pd.)z I-K (A22)

Substituting Eqs. (A21) and (A22) into Eq. (A19), there results

C05/LCOSH24IJEI - (24,./SINI44)2-. ']= 2,4,/SINHZd (A23)



Therefore if an is a root of Eq. (A23), -an is also a root; if On corresponds
to the root an through Eq. (A21), then -On also corresponds to an and + On corre-
spor•ds to -an. Thus if tn - an + i~n is a root of Eqs. (A18) and (A19), then t-n
an - i~n, -tn - -an - i~n, and -tn = -an + ifn are also roots. From Eq. (A23), as
an becomes large

C05H 5 4  t7r

or

A I

and from Eq. (A24)

fl + '(2" * 1 rr

Hence for large n, the poles are given approximately by

Seewald (Ref. 17) lists the first four positive roots of Eq. (A23) as

% = 1.1415 ; P, = 2.1142
S= 1.533 ; N - 5.359

Cf = 1.766 ; 3 = 8.537
a4 = 1.925 ; 4 = 11.70

The residue of the integrands at the pole tn is -iven by 7n where

+5A(I9') t

25



or

a =/'I. 1•ne'••: ,..,. #s,-l, t P),

or

! 2 t.(COSH2t,.i)

Now let

2t(CO 5H2 t,, + C. oD : "

and

then

- 'COSA•4 (I tr))]
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Therefore

R,

or

R= Z I[2/1z1[(A,,C. BC~s~I

-t (4,CA -AADQ, 5I1N Ad An o+ o e A0 0-~''

and similarly

R= [MC.f(AjoCw )~nCOSAgo(/- r)

- 1zw~f -Aw.~,.) 5INA6' 4W,, (1

~(0~Ca~A~CO S/NA a.,2 ~~~

(6z~ -A2, 4)S1S/NA 4.w Y'- 8d/re
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Finally from Eqs. (A16), (AlT), and (A24), the integrals of Eqs. (Al) and (A2) can
be expressed

J 7)5/INA tCOS A7 3,t

J'±(tS?)-#1 N At COSA - 7Z( (rG,,-,,

where

e - 161*"a'cc 0 S Age,- r)

e~~~ T

Il) e8o -A 4, 1 , f/
C•(•y';- e- "'*)•SN I 4(,' N X r)

e *•.o*)S / N A 4,, e •)
+ e,\c/ -,*)s I N X ,f- , ./
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vhere

-51N t (*)SN,0e"'11~

- 51NHa,4 (/- ?)S IN&g (/-?)SIN4r1

:7 SIN H~w(l- ?)CoS0(/4il 1

ýp~ 5 1/~,( N e( ) O /-?

R , , 7)[cosuH& -7 C 0,5c4 (/,P ?), SIN

Q = Z/~(CO 5 10a.cs2,(It .) -/4,( t-Nh 7) CSI~,j

Cy 2[4jxCOS Hz,?.4COSAI 5i /4 SNHZd, SI/N2/3,4

with
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A: Cooling Tube Used
With Four Wave Case

B: Cooling Tube Used
With Short Wave Case

Figure 11: Photographs of Cooling Tubes
Used to Provide Heat Sinks
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Figure 12: Configurations Used to Produce
Desired Temperature Distributions
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------- - ----- --
I,2 '

"to
recorder

1: all connections within dotted lines
made near specimen

2: strain gage on upper surface

3: specimen
4: strain gage on lower surface
R: 120A precision resistors
Es: DC. supply voltage

Figure 19: Electrical Circuit Used with Four
Wave Case Employing a Three-Wire
Lead System
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recorder

1: region near specimen
2: strain gage on upper surface
3: specimen
4: strain gage on lower surface
R: 120 precision resistors
Es: DC. supply voltage

Figure 20: Electrical Circuit Used with
Short Wave Case
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Figure 22: Comparison of Measured strain in
x-Direction Obtained from Four Wave
Case with Przemieniecki's Solution at
(X/L)= 0. 75
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Figure 24: Measured Strain in Y-Direction at
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Figure 29: Calculated Stress Distribution Along
=0 with X = 0.-27775
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0 U D D e r x x x ix oZl * . .1 6 c9 .1 5 8 .0 8 c! 0 - .J Q*
0 lower xx xix -. 413* .208* .288* .210* .151* .080* -.046

* Strain measured in y-direction
** Strain measured in x-direction

All strains recorded as e/arT

Figure 34: Tabular Presentation of Measured Data
for Short Wave Case
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Figure 36: Photograph of Instrumentation

Used for Short Wave Case
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